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Abstract

A coupled model, which combines the Biosphere-Atmosphere Transfer Scheme (BATS) with an

advanced atmospheric boundary-layer model, was used to validate hypothetical aggregation rules

for BATS-specific surface cover parameters. The model was initialized and tested with

observations from the Anglo-Brazilian Amazonian Climate Observational Study and used to

simulate surface fluxes for rain forest and pasture mixes at a site near Manaus in Brazil. The

aggregation rules are shown to estimate parameters which give area-average surface fluxes

similar to those calculated with explicit representation of forest and pasture patches for a range of

meteorological and surface conditions relevant to this site, but the agreement deteriorates

somewhat when there are large patch-to-patch differences in soil moisture. The aggregation rules,

validated as above, were then applied to remotely sensed 1 km land cover data set to obtain grid-

average values of BATS vegetation parameters for 2.8 ° x 2.8 ° and 1° x 1° grids within the

conterminous United States. There are significant differences in key vegetation parameters

(aerodynamic roughness length, albedo, leaf area index, and stomatal resistance) when aggregate

parameters are compared to parameters for the single, dominant cover within the grid. However,

the surface energy fluxes calculated by stand-alone BATS with the 2-year forcing data from the

International Satellite Land Surface Climatology Project (ISLSCP) CDROM were reasonably

similar using aggregate-vegetation parameters and dominant-cover parameters, but there were

some significant differences, particularly in the western USA.



1. Introduction

Natural surfaces vary from place to place with a scale of heterogeneity which ranges from a few

meters to hundreds of kilometers. Parameterizing such heterogeneous land surfaces in weather

and climate prediction models is problematic because the grid square typically represents an area

between 104 and 106 km 2. In recent years, efforts have been made to improve the description of

heterogeneous land surfaces in these models and there has been progress towards defining

averaging procedures to calculate area-average land surface exchanges at local and regional

scales (Mason, 1988; Wood and Mason, 1991; Blyth et al., 1993; Lhomme et al., 1994; Lynn et.

al., 1995; Raupach and Finnigan, 1995). However, only a few past studies (such as Noilhan and

Lacarr6re, 1995) have validated model performance against observations, and little research has

used the land surface schemes actually in use within General Circulation Models (GCMs).

One way to describe heterogeneous vegetation is to make a calculation for each separate patch of

vegetation. This can be done by the 'mosaic' approach, in which separate models are used to

estimate the fluxes for each patch at each time step and an appropriately weighted average value

is then taken (e.g. Koster and Suarez, 1992). Recently Raupach and Finnigan (1995) have shown

theoretically that, providing the surface energy partition for each patch is represented with the

Penman-Monteith equation (Monteith, 1965), it may, in principle, be possible to simplify this

approach by averaging appropriately chosen combinations of the surface and aerodynamic

resistances used in that equation. However, despite the theoretical elegance of Raupach and

Finnigan's simplification, it does not fundamentally alter the computational demand associated

with representing an area of heterogeneous cover. For each separate patch the value of the surface



and aerodynamic resistances are both related to transient weather variables, and they must be still

individually evaluated and then averaged at each time step. Moreover, surface resistance is often

related to the local soil moisture status--suggesting the need to retain a separate water balance for

each patch, while aerodynamic resistance depends on local atmospheric stability--suggesting the

need to retain an individual calculation of the transient surface energy balance for each patch.

A second approach to represent heterogeneous vegetation involves a greater level of

approximation. In it a standard land-surface scheme is used with effective, area-average

vegetation parameters calculated using simple aggregation rules applied to all the vegetation

cover types present in the grid element. Aggregation rules (Shuttleworth, 1991) are simple

averaging procedures to calculate effective values of surface cover parameters which estimate

area-average surface fluxes similar to those given with explicit representation of the separate

patches of vegetation. A weighted linear average of surface-cover parameters based on the

fractional area of all the cover types present in the grid is the simplest averaging procedure, but if

fluxes are not proportional to parameters (such as the aerodynamic roughness length), then linear

averaging is inappropriate.

This second approach is different to that of Koster and Suarez (1991) or Raupach and Finnigan

(1995) in that flux (or resistance) averaging is not necessary at each time step, rather it is done

once at the beginning of the model run or, in the case of parameters which vary with season, once

every week (say). Moreover, at each model time step the values of the important surface controls

(such as surface and aerodynamic resistance) which are implicit or explicit in a land surface

scheme are not evaluated using transient weather variables for each separate patch. One
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calculation of their area-averagevalue is madeand this is appliedto describethe whole grid

assuming that the relevant area-averageparametersgiven by the aggregationrules apply.

Theoretical justification

representationis much

for this second,more

less tractable and so

approximateapproachto provide aggregate

model experimentsare used to explore the

acceptabilityof the hypotheticalaggregationrules to be used to average parameters appropriate

for a particular land surface scheme. The first part of this paper describes such a model

experiment carried out for the Biosphere-Atmosphere Transfer Scheme (BATS, Dickinson et al.,

1993).

BATS is the land-surface parameterization used in the National Center for Atmospheric

Research's (NCAR's) Community Climate Model. In normal application of BATS, the values of

vegetation parameters are based on the single dominant surface-cover in each grid cell. A set of

hypothetical aggregation rules for BATS surface cover parameters are given in Table 1 (Arain et

al., 1996). Linear averaging is proposed for all parameters except aerodynamic roughness length

and minimum stomatal resistance. The aggregate value of aerodynamic roughness length is

calculated by averaging the drag coefficient from Mason (1988). Table 1 also shows the three

alternative averaging procedures that have been proposed for minimum stomatal resistance:

linear averaging, reciprocal averaging, and average of these two averages.

Arain et al. (1996) coupled BATS with an advanced, two-dimensional model of the atmospheric

boundary-layer first developed by Mason and Sykes (1980) to obtain a realistic coupled model of

surface-atmosphere exchanges. This model, hereafter called the BATS-ABL model, was used to

investigate the acceptability and applicability of aggregation rules for BATS vegetation



parametersusing observedforcing and surfacedata from the First InternationalSatelliteLand

SurfaceClimatology ProjectField Experiment(FIFE) site in Kansas(Sellerset al., 1992).The

resultsshowedthat theaggregationrulessuccessfullycalculatearea-averagesurfacefluxesunder

a variety of hydrometeorologicalconditionsat this site. However,theydid not work well when

artificially wet (irrigated)patcheswerecombinedwith naturallydry soil patches.

In the Arain et al. (1996)study,the applicationof aggregationrulesfor someimportant BATS

parameterssuchasaerodynamicroughnesslength,zeroplanedisplacementheight,andminimum

stomatalresistancewaspoorly testedbecausethereis little differencein theseparametersfor the

coverclassesrelevantto the FIFE site.Thereforeit is appropriateto extendaggregationteststo

thosemixesof vegetationwhich havea largecontrastin thesethreeparameters.Clearedareas

within undisturbedAmazonianforest provide the desiredcontrast.The resultsof aggregation

testscarriedout for adjacentpatchesof Amazonianevergreenbroadleaftreesandshortgrassare

presentedin Section 2 of this report. Observeddata used for model initiation, forcing, and

validation were obtainedfrom the Anglo-Brazilian ClimateObservationalStudy (ABRACOS:

Shuttleworthet al., 1991).

On the basis of the successreported in the current (and previous) study, the BATS-specific

aggregationrules werethenappliedto the 1 km land-coverdataset of Lovelandet al. (1991) to

calculategrid-averagevaluesof BATS vegetationparametersfor 2.80x 2.80and 1° x 1° grid

squaresacrosstheconterminousUnited States(U.S.).A comparisonof the ensuingaggregate

parameterswith parametervaluesgivenby theconventionaldominantcoverwithin a grid cell is

describedin Section3.In Section4, theforcingdatafrom theInternationalSatelliteLandSurface



Climatology Project (ISLSCP)"Initiative 1" (Meesonet al., 1995)areusedto conduct 2-year

BATS simulations for the conterminousU.S. at a 1° resolution. Fluxes from aggregate

parametersarecomparedto fluxes from parametersbasedon the dominantvegetationtype in

eachgrid.

2. Testing Aggregation Rules in the Amazon

2.1. The ABRACOS Experiment

The ABRACOS sought to improve the parameterization of surface-atmosphere models by

providing accurate and representative data for forested and deforested areas in the Amazon.

Detailed studies of surface climatology, micrometeorology, plant physiology, and soil hydrology

were made at three different forest and adjacent clearing sites across the Amazon (Shuttleworth

et al., 1991; Gash et al., 1996).

Data from the Reserva Duke forest site and Fazenda Dimona pasture site, which are located

respectively about 25 and 100 km from Manaus, Amazonas, were used in the current study.

Reserva Duke (2 ° 57'S, 59 ° 57'W) is a protected area, and the experimental site is surrounded by

undisturbed forest for at least 5 km in all directions. The mean canopy height is 35 m, but some

trees reach 40 m, and meteorological data were collectecl at the top of a 45m tower. Detailed

descriptions of the site and measurements have been given by Shuttleworth et al. (1984), Roberts

et al. (1990), and Shuttleworth et al. (1991). Fazenda Dimona (20 19'S, 600 19'W) is a 10 km 2



forest clearing which wascreatedby felling andburning the original forest and then planting

pasturegrasses(suchasBrachiaria decumbens and Brachiaria humidicola) 12 years before the

measurements were taken at this site. About 11% of the total area is bare soil, while 5% area is

covered with tree trunks (Wright et al., 1992).

For logistic reasons, soil moisture data were recorded at a forest site near the Fazenda Dimona

pasture site rather than at the Reserva Duke site. The soil at Fazenda Dimona is a yellow Latosol

(Oxisol or Haplic Acrorthox) with 80% fine clay content and high conductivity (Wright et al.,

1996). The soil moisture data were collected weekly at 20 cm intervals to a depth of 2 m using

neutron probes. Hourly measurements of incident solar radiation, wind speed, air temperature,

specific humidity, and precipitation were made with automatic weather stations. Net radiation

(Rn), sensible heat (Hs), latent heat (LE), and ground heat (G) fluxes were also measured at the

pasture site, while only net radiation and ground heat flux were recorded at the forest site. Fluxes

at the pasture site were recorded by a 9 m profile of aspirated psychrometers. These fluxes were

in good agreement with measurements made with eddy correlation system and the Bowen ratio

system during a 50 day sample period and the local energy budget was closed (Wright et al.,

1992). At both sites, data collection started in mid-September 1990, and continued until mid-

September 1991, although there were times when some of the meteorological and soil moisture

data were missing at one or both sites during this period.



2.2. Validation of BATS at the Amazon Sites

Short grass and evergreen broadleaf trees are the appropriate BATS surface cover classes for the

pasture and forest site, respectively. The corresponding set of morphological, physical and

biophysical parameters are given in Table 2. Based on ABRACOS observations (Wright et al.,

1996), soil textural class 10 [within a range of 1 (sand) and 12 (clay)] and soil color class 7

[within a range of 1 (light) and 8 (dark)] were selected as suitable for the Manaus site. The

associated soil parameter values are given in Table 3.

A stand-alone version of BATS was run using the observed hourly values of incident solar

radiation, air temperature, specific humidity, wind velocity, and precipitation as forcing data. It is

necessary to initiate nine state variables (see Table 4). Surface soil temperature, deep soil

temperature, canopy temperature, and canopy air temperature were all initialized to observed air

temperature in BATS. The ground wetness factor was set to 1, while the volumetric soil moisture

in the three BATS soil layers (upper 0.1 m, rooting 1-1.5 m and total 10 m) was obtained by

linear interpolation of the observed soil moisture data. The soil moisture values observed at 2 m

were assumed to be the same as at 10 m, which is the depth of the lowest BATS soil layer.

Surface flux data for the pasture site were available for validation for 27 days (9 October - 5

November) in 1990 and 71 days (2 July - i1 September) in 1991. Measurement period during

1990 was typically dry, while the 1991 dry season was more typically wet (Wright et al. 1996).

When the above-described default parameters were used in the stand-alone version of BATS, the

calculated latent heat fluxes were, on the average, 38 Wm -2 too low, while sensible heat fluxes



weretoo highby 18Wm 2. The root mean squared error between 30-minute model estimates and

observations of these fluxes were 82 Wm -2 and 57-Wm 2, respectively (see Table 5a). In this

study, the philosophy adopted was to make the minimum parameter changes necessary to achieve

acceptable agreement between observations and model calculations. In practice, the simulations

of the pasture energy fluxes were greatly improved merely by changing the value of minimum

stomatal resistance from 200 sm t to 40 sm t, which is consistent with observations made at this

pasture site [Wright et al. (1996) suggest calculating surface conductance (in mm s t) using leaf

area index (minimum value 1.2 at this site) multiplied by 21.5 mm s-t]. With this change in

minimum stomatal resistance, the mean bias was reduced to 11 Wm -2 for latent heat and 4 Wm -2

for sensible heat, while the corresponding root mean squared errors reduced to 54 and 40 Wm-',

respectively (see Table 5b). These improvements are illustrated in Figure la-b for July 21, 1991,

a day on which the soil moisture was fairly high.

Forest validation runs were also performed over the two time intervals, 3 October 1990 to 31

January 1991 and 1 July 1991 to 26 September 1991, these being the times when both soil

moisture and meteorological forcing data were available at the Reserva Ducke forest site.

Although surface heat fluxes were not available at this site for this period, other studies for

forested areas in the Amazon (Shuttleworth, 1988; Wright et al. 1996) have shown that, on the

average, about 80% of the available energy is used for transpiration and that there is no

substantial decrease in evapotranspiration during low rainfall periods. BATS simulations using

default parameters gave latent heat fluxes which were too small during periods of low rainfall.
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The default parametersfor evergreenbroadleafforests(given in Table 2) assumethe rooting

depth for forest cover is 1.5 m and that 80% of theseroots are in the upper l0 cm of soil.

However, there is strongfield evidence(e.g.,Hodnett et al., 1995;Nepstadet al., 1994) that

forestrootspenetrateandextractwaterto depthsof atleast3.5m in theAmazon.To reflect this,

thedepthof therootingzonein BATSwasincreasedfrom 1.5m to 4.0m, andthedistribution of

rootswaschangedsothatonly 20%(ratherthan80%)of rootswereassignedto theupper10cm

deepsoil layer.This changegreatlyimprovedthesimulatedsurfacefluxes for the forest in dry

conditions.Theseimprovementsareshownin Figureslc-d.

Theaggregationstudiesdescribedin thenextsectionweremadeusingboththeoriginal "default"

parametersandthe revisedparametersto establishthe sensitivityor otherwiseto the assumed

parametervalues.

2.3. Aggregation Studies

2.3.1. Procedures

The procedures used to test aggregation rules were essentially identical to those described in

detail by Arain et al. (1996). Two versions of the BATS-ABL model were compared: one with

explicit representation of a 1-km long pasture adjacent to a 1-km long forest, and one in which

vegetation is a homogeneous blend of pasture and forest. In the homogeneous case, vegetation

parameter values were based on the aggregation rules listed in Table 1 applied to a 50% pasture,

50% forest mix. The selection of patch and domain size depends on the natural heterogeneity of
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the area under consideration and numerical characteristics of the model. Model experiments at

the FIFE site (Arain et al., 1996) showed that simulated fluxes were not very sensitive to the

modeled domain and patch sizes, and that 1 km patches in a 2 km domain are plausible scales of

patch variability. Both versions of the model were initiated with identical observed

meteorological and soil moisture data and were run forward for short periods at particular times

(e.g.a.m., noon, p.m.) on selected days to allow the modeled atmosphere to come into

equilibrium with the modeled surface, thus providing a 'snap shot' of the difference in surface-

atmosphere interactions with and without explicit representation of the vegetation patches. A

comparison was then made between model-calculated area-average energy fluxes of the

heterogeneous and homogeneous models. The level of agreement between these two different

calculations is then used to evaluate the performance of the aggregation rules.

In practice, the simulated fluxes (especially those of ground heat flux) are sensitive to the initial

assignment of deep soil temperature because the model is run forward only for a short period of

time. Hence, the initial state variables used in the model (see Table 4) were obtained by selecting

the required values at appropriate times from multi-month stand-alone BATS simulations for

pasture, forest, and aggregate-vegetation.

The interface height between BATS and the atmospheric boundary-layer model was set to 45 m.

Initial vertical profiles of potential temperature, humidity, and wind speed were generated by

running a one-dimensional version of BATS-ABL model forward for several hours with fixed

surface conditions until the calculated values of these atmospheric variables matched the

observation 45 m above the ground at the forest site. It was assumed that the remainder of
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calculatedvertical profiles were then in equilibrium with area-averagesurfaceexchanges.The

integratingtime of theBATS-ABL modeldepended-onthe amountof surfacevariationandthe

spatial dimensionof the variation, but typically correspondedto 10 minutes.For a detailed

discussionon the sensitivity of simulatedsurfacefluxes to the choiceof this model interface

height, anddetailsof BATS and ABL modelcomponents,the readeris referredto Arain et al.

(1996),Arain (1994),Blyth et al. (1993),Dickinsonet al. (1993),WoodandMason(1991),and

Mason(1988).

2.3.2. Results

Two-patch and corresponding aggregate-cover simulations using the BATS-ABL model were

made on five cloud-free days three times a day: one mid-moming, one close to noon, and one

mid-afternoon (see Table 6). Many aspects of climate are fairly similar throughout the year at this

ABRACOS site, but rainfall is seasonal. By chance, one dry period during the 1990 data

collection was much longer than is usual, and this gave an excellent opportunity to observe

effects of dry periods on aggregate surface behavior with these two very different surface

vegetation covers. Two study days were selected from this unusually dry period and three from a

more typical wet period--these judgments being based on the observed soil moisture. The mid-

day observed soil moisture values in the upper 0.1 m soil layer and in the 1 m rooting layer are

given in Table 6.

October 26, 1990 was a hot, sunny day when the soil moisture in the rooting zone was low.

Simulated evaporative flux from the forested area was large and showed no evidence of soil
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moisture stress because of the deeper roots, while evaporation from the pasture patch was low. In

the BATS-ABL model, the corresponding aggregate vegetation cover also did not show evidence

of soil moisture stress because of its (assumed) 2.5 m deep rooting depth. The simulated two-

patch and aggregate-cover area-average energy fluxes were noticeably different on this day,

especially for the noon and mid-afternoon runs. October 30, 1990 was also a dry day with low

soil moisture in the rooting zone, and the difference in evaporative flux from forest and pasture

patches was again as large as 271 Wm -2 at mid-day. In fact, the pasture patch was close to wilting

point, while there was still plenty of water available for evaporation in the deeper-rooted forest

patch. The variation in sensible heat (Hs), latent heat (LE), ground heat (G), and momentum flux

(M) across the modeled domain from two-patch and homogeneous cover is shown in Figure 2.

The increase in the momentum flux at the left edge of the forest patch (located in the middle) is

because of the sudden increase in the aerodynamic surface roughness (see Figure 2d). This

perturbation at the left edge of forest patch is canceled (in terms of area average) by an decrease

in momentum at the fight edge. The differences between patch average and aggregate fluxes were

also significant (up to 25 Wm-2).

December 10, 1990 was a wet day at the beginning of the rainy season in this part of the

Amazon. Soil moisture at the pasture site was sufficiently high to essentially eliminate the soil-

moisture control on transpiration, so that the pasture was evaporating at close to potential rate.

The two-patch and aggregate-cover area-average energy fluxes were similar for all three runs on

this day. The last two days on which BATS-ABL runs were made, July 3 and August 28, 1991,

were days with high soil moisture. The evaporative fluxes from both the pasture and forest
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patches were large, and the latent heat from aggregate cover was also high. The proposed BATS-

relevant aggregation rules again worked well at all three times on these two days.

Comparison of patch-average and corresponding aggregate sensible heat, latent heat, ground heat

and momentum flux for all 15 BATS-ABL runs is given in Figure 3. In these runs, the revised

vegetation parameters were used (see Section 2.2). This figure shows that the aggregation rules

worked quite well when neither of the vegetation patches has soil moisture stress, but agreement

between two-patch and aggregate-cover area-average fluxes deteriorates somewhat when one of

the patches (the shorter-rooted pasture patch) is subject to soil moisture stress. The four outliers

of latent heat flux in Figure 3b correspond to the noon and afternoon model runs on October 26,

1990 and October 30, 1990. Two-patch and corresponding aggregate-cover runs were also

performed for the above-mentioned days and times using the BATS default vegetation

parameters. The results (not shown in this paper) are similar.

Hence, the overall results of model experiments at the ABRACOS (Manaus) site are in essence

the same as those reported by Arain et al. (1996) for the FIFE site. At the FIFE site, aggregation

rules did not work well when dry soil moisture patches were combined with artificially wet

(irrigated) patches. They also perform less well at the ABRACOS site when there is a large soil

moisture deficit in the shallower-rooted pasture patch, while the forest patch (with deeper roots)

still has access to a substantial moisture store.

In order to investigate the sensitivity of aggregation rules to large differences in soil moisture in

adjacent patches in greater detail, the stand-alone BATS runs for forest and pasture patches were
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compared with a run for the corresponding aggregate cover using observed forcing data at the

Reserva Duke forest site. Figures 4a-b show daily average energy fluxes from two-patch and

corresponding aggregate-cover runs for periods with dry and wet soils, while Figure 4c shows the

wilting factors (calculated within the BATS model for upper and root soil layers using observed

soil moisture in corresponding soil layers) for both pasture and forest patches for the entire study

period. The plant wilting factor (WILT) as defined by Dickinson et al. (1993) is given by:

• _ (s i)-B _ 1

WILT (Sw) -B --1

(1)

where si is the ratio of volumetric soil water to that at saturation for ith soil layer, and Sw is the

ratio of volumetric soil water to that at the permanent wilting point (i.e., when suction reaches 15

bars), while B (= 9.2) is the exponent which defines the change in soil water potential and

hydraulic conductivity with soil moisture (Clapp and Hornberger, 1978). The W'LT ranges from 0

at saturation and 1 at the permanent wilting point.

As expected, the differences in sensible heat, latent heat, and ground heat flux between

heterogeneous and aggregate cover is most pronounced during the time period when there was a

large soil moisture deficit (see Figure 4a and 4c). In fact, the upper soil is close to the wilting

point for both the pasture and forest during this unusually dry period. In the rooting zone,

however, the pasture is water stressed and the forest is not. Because there is a non-linear

relationship between the wilting factor and soil moisture content given in Equation (1), the

average root soil moisture does not lead to the average wilting factor. However, it is reassuring to

note that, even with this extreme difference in cover type (resulting in a four-fold difference in

rooting depth), the discrepancy between daily average surface energy fluxes is still only about
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10% or 10 Wm -2 in dry soil conditions which are, at least in the case of this particular

ABRACOS study site, uncommon and short-lived.

Table 1 gives three alternative aggregation rules for combining minimum stomatal resistance,

these being linear averaging, reciprocal averaging and, following the suggestion of Blyth et al.

(1993), the average of these last two averages. Evaluation of their relative merits can be made at

this ABRACOS site because applying these three rules with the preferred value of minimum

stomatal resistance for short grass (40 sm _) and evergreen forest (150 sm l) gives the values of

95, 63, and 79 sm l, respectively. Model runs were made using both BATS-ABL and the stand-

alone version of BATS with these three alternative values for the aggregate value of minimum

stomatal resistance. Typical results for the stand-alone BATS model are illustrated in Figure 5.

Figure 5a shows calculated fluxes on October 30, 1990, a day with dry soil, and Figure 5b shows

calculated fluxes on August 28, 1991, a day with wet soil. Applying the three alternative rules

gave results which (although not good) are very similar to each other when soils are dry; however

in more common wet soil conditions, the linear aggregation rule consistently performed best.

Similar results were obtained from simulations using the coupled BATS-ABL model on the five

days and three times of the day for which tests were made. On the basis of this evidence, a linear

aggregation rule is recommended for this BATS parameter, and linear aggregation of minimum

stomatal resistance was adopted and applied for the remainder of the analysis described below.
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3. Application of Aggregation Rules for USA

Results for the ABRACOS site and those reported by Arain et al. (1996) for the FIFE site suggest

that the proposed BATS-specific aggregation rules given in Table 1 calculate area-average

energy fluxes that are acceptably similar to those calculated with explicit representation of

separate vegetation patches under a wide range of hydrometeorological conditions and for a

range of surface covers appropriate to these two sites. Shortcomings can arise, but these are not

because of patch-to-patch differences in the vegetation-related parameters per se; rather, they

occur if there are marked differences in the plant-accessible soil moisture in the heterogeneous

landscape (such as irrigated patches in dry landscape or short rooted pasture patches in forest

areas), and they arise because the root resistance assumed in BATS is a non-linear function of

soil moisture. However, an analysis of irrigated land falling within any individual grid square

used in meteorological models shows that the proportion is rarely, if ever, greater than 10% in the

USA--the USA being the only region for which satellite-derived data on land cover are readily

available at this time. Moreover, coupled modeling studies using BATS-ABL show that

including artificially irrigated vegetation with this relative extent still allows the use of

aggregation rules with acceptable accuracy in the calculated area-average fluxes.

For the purposes of the remainder of this study, we chose to ignore this complicating, indirect

influence of heterogeneous soil moisture acting through the overlying vegetation and proceed to

investigate the sensitivity of surface parameters and exchanges under the assumption that the

BATS-specific aggregation rules for vegetation parameters given in Table 1 have broader
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acceptabilityand applicability.However, the readeris cautionedthat the following analysisis

questionablein two specificcases,namelyfor landscapesandclimatesin which thereareeither

(a) largedifferencesin soil moistureand with wet anddry soils coveringapproximatelyequal

areasand with soil moisturedifferencesgreaterthan 10-20%of the rooting zonesoil moisture

store;or (b) approximatelyequalareasof shallow-rootedanddeep-rootedvegetationgrowing in

a climatewheretheshallower-rootedvegetationis undersoil moisturestress.

3.1. The USGS/EDC Land Cover Data set

A prototype land-cover characteristics data base for the conterminous United States is available

from the U.S. Geological Survey (USGS) EROS Data Center (Loveland et al., 1991) for use in a

variety of global modeling, mapping, monitoring, and analytical studies. These data were derived

by classifying the 1990 NOAA-11 Advanced Very High Resolution Radiometer time-series data

at 1 km x 1 km resolution, with post-classification refinement based on other Earth science data

including topography, climate, soils, and ecoregions. The data base uses the concept of seasonal

land cover regions as a framework for presenting the temporal and spatial patterns of vegetation.

A set of 28-day maximum Normalized Vegetation Difference Index (NDVI) composite images

covering the conterminous United States were clustered into 70 spectral-temporal classes and

subsequently stratified, refined, and labeled using the ancillary data. As a result, 159 seasonally

distinct spectral-temporal land-cover classes were labeled according to their constituent

vegetation types and, in the case of the data used in this study, these 159 classes were then

translated into the 18 BATS-relevant cover classes. An additional nine classes were added which

correspond to mixtures of two classes within a 1 km x 1 km pixel.
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3.2. Aggregate Parameters from Remotely Sensed Land Covers

We obtained aggregate BATS parameter values for 2.8 ° GCM grids by computing the area-

average of the 1 km BATS values obtained from the USGS-EROS land cover data base described

above. Aggregate values of vegetation parameters (Table 3) were computed using the

aggregation rules given in Table 1 (but assuming a linear aggregation rule for minimum stomatal

resistance). In this section, the resulting parameter values are compared with the equivalent

values for the single most common BATS vegetation cover present in the grid square, this being

the method used for assigning parameters in GCMs at the present time. We used a grid size of

2.8 ° latitude by 2.8 ° longitude because this is the standard horizontal resolution of NCAR's

Community Climate Model version 2 (CCM2) and is a typical resolution of other climate

models.

The fractional cover area of all vegetation types within a given grid cell was calculated using the

total number of (1 km x 1 km) pixels for each cover class. In the case of cover types assigned a

number 20-28 in the USGS-EROS data, 50% of the area of each pixel was assigned to be one

cover type and 50% to the other cover type in these calculations. There can be up to eight cover

classes in an individual 2.8 ° x 2.8 ° grid square, but more typically there are 3-5 different BATS

cover classes present. On the average, about 50% of the grid square is covered with the most

common cover class, but rarely is the grid square entirely covered with one vegetation class. In

some cases, the most common vegetation class covers only 20-30% of the grid.
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The percentage difference between the value of important BATS-specific vegetation parameters

for the single cover currently assigned to each grid square in CCM2 and the value calculated for

aggregate-cover using USGS-EROS data is illustrated in Figure 6. Maximum fractional

vegetation cover is influenced little by using these different approaches of parameterization for

most of the USA (see Figure 6a), but there are pronounced differences in some regions of the

west. This is because the default cover assigned within CCM2 is semi-desert in these regions, but

the remotely sensed data show the substantial presence of vegetation with higher vegetation

cover fraction. In contrast, the values assigned to minimum stomatal resistance (Figure 6b) show

significant differences in central and eastern portions of the USA, with the sign depending on

whether more or less crop land (which is assumed to have lower stomatal resistance than other

cover types in BATS) is included in the area-average calculation.

The calculated values of area-average albedo and warm season leaf area index (Figures 6c-d) also

show marked differences, especially in the westem United States. The use of default cover class

assigned in CCM2, which is often short grass or shrub land, neglects the presence of other

surface cover types such as desert and evergreen forest. However, the presence of these covers is

reflected in the parameter values calculated for aggregate cover. The assigned values of cold

season leaf area index and aerodynamic roughness length exhibit marked differences (of up to

+100%) across the entire United States (Figures 6e-f), but the spatial distribution of differences

in these parameters is difficult to interpret.

Figure 7 is similar to Figure 6 except that aggregate parameters were computed for the 1° x 1"

(ISLSCP) grid mesh. In general terms, the percentage differences in parameter values follow a
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similar pattern to that calculated for the 2.8 ° x 2.8 ° (CCM2) grid mesh, but it is easier to

interrelate spatial patterns between parameters in the case of this smaller 1° x 1° grid mesh. The

most noticeable distinction between Figure 6 and Figure 7 occurs in the western United States for

vegetation fraction, leaf area index, albedo, and minimum surface resistance. This distinction is

not related to the use of aggregate covers, but is due to a mismatch between the single cover

currently assigned within CCM2 and that measured from satellite.

4. Simulations Using ISLSCP CDROM Data

4.1. Model Forcing Variables and Initiation

The ISLSCP "Initiative 1" data set (Sellers et al., 1995; Meeson et al., 1995) is arguably the most

spatially and temporally comprehensive, uniform and contiguous data currently available for

land-surface modeling studies. This data set includes many of the fields required to prescribe

boundary conditions, initiate state variables, and force land system models. Data are available for

1987 and 1988, and most are spatially continuous over Earth's land surface on a 1° x 1° equal-

angle grid. The temporal frequency of the data set is monthly, but some important near-surface

meteorological parameters are available as both 6-hourly and monthly means. Most of the near-

surface meteorological variables were extracted from the operational forecast analysis archive of

the European Center for Medium-Range Weather Forecasts.

o

In BATS, air temperature, dew point temperature, surface pressure, wind velocity, precipitation,

and downward short-wave and long-wave radiation are used as forcing variables, and these

22



variables are available as 6-hourly time series on the ISLSCP CDROM. They were interpolated

to provide hourly-mean values using a cubic spline interpolation method. The interpolated

negative values of shortwave radiation were set to zero. The 6-hourly total precipitation was

equally distributed as hourly values for that period. Saturated specific humidity was calculated

from dew point temperature and surface pressure using Tetens formula (Riegel, 1974). Air

temperature and dew point temperature were given at 2 m above the ground, while wind velocity

was given at 10 m. For consistency, the values of wind velocity were extrapolated to 2 m

assuming a logarithmic wind profile.

Although soil texture data are provided in the ISLSCP CDROM, soil color classes are not

provided; hence (for consistency), both soil texture and the soil color used in the stand-alone

BATS simulations were taken from the Wilson (1984) data set. Selection of a set of soil

parameters corresponding to these soil classes was then made following Dickinson et al. (1993).

In each grid square, surface soil temperature, deep soil temperature, canopy temperature and

canopy air temperature were all initialized to the observed air temperature in the stand alone

BATS model. Soil moisture in the upper, root, and total soil layer was initialized to a fixed

fraction of available soil storage, which in most grid squares corresponds to 60-75% of

saturation, depending upon soil textural class. The ground wetness factor was set to 1. Because

BATS output can be sensitive to initial state variables, the model was 'spun up' for 20 years (by

cycling the observed forcing variables from first year of CDROM data set) before it was n.m

forward to provide the results for 1987 and 1988 described below.
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4.2. Model Results

D

Figure 8 illustrates the calculated latent heat flux (left) and sensible heat flux (right) given by the

stand-alone BATS simulations, using parameter values defined for each grid square for the most

common cover in Figures 8a, 8c, 8e, and 8g and using aggregation rules in Figures 8b, 8d, 8f, and

8h. The four panels at the top of the figure are average values calculated using forcing variables

from the ISLSCP CDROM data set for June, July, and August 1988, while the four figures at the

bottom of the page are the equivalent average values for December 1987 and January and

February 1988. [Note: There was little obvious difference between fluxes calculated for

equivalent seasons in 1987 and 1988 and, in comparison with the latent and sensible heat fluxes,

the 3-month average ground heat flux calculated with both sets of parameters is everywhere very

small in both winter and summer seasons.]

A distinctly regional behavior in terms of the calculated surface fluxes across the USA is

illustrated in these figures. In summer, evaporation (Figures 8a-b) largely follows the distribution

of precipitation across the country, and the eastern USA and gulf coast have significantly greater

latent heat flux than the western USA. There is complementary behavior for sensible heat

(Figures 8e-f) as might be expected from energy balance considerations. The east-west

distinction persists in the winter season. Latent heat fluxes (Figures 8c-d) are again larger in the

east than the west--although the distinction is less pronounced than in the summer, while sensible

heat fluxes (Figures 8g-h) are calculated to be negative in the eastern USA but are positive and

approximately equal to the latent heat flux in the western USA. The mean values of latent heat

and sensible heat fluxes for summer season and winter season over entire domain (conterminous
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USA) were calculatedfor both single most common vegetationparametersand aggregate

vegetationparameters.The maximumandminimumflux valuescorrespondingto anygrid square

for eachpanelof Figure8 werealsocalculated.The comparisonof meanvaluesandmaximum

andminimumvaluesof latentheatandsensibleheatfluxes for summerseasonandwinter season

using two approachesaregiven in Table 7. The meanvales from single dominantcover and

aggregatecover are very similar although large differenceswere observedin the range of

maximum and minimum flux values.The BATS simulated fluxes were also comparedwith

estimatedsurfacefluxes provided on the ISLSCP CDROM which were extracted from the

EuropeanCenterfor Medium-RangeWeatherForecast(ECMWF) operationalforecastanalysis

archive(seeBlondin, 1991for detailsof ECMWF surfacemodel).Thegeographicalpatternsof

thosefluxes werebroadlysimilar to thoseshownin Figure8 in summer,althoughthe ISLSCP

datainclude somesuspiciouslyhigh latentheatfluxes in portionsof the easternUnited States.

The sensibleheatflux reportedon theISLSCPCDROM also haszonesof sensibleheatwhich

runeast-westin thewinter,ratherthannorth-south.

Thedifferencesbetweenthesurfaceheatfluxescalculatedwith parametersfor themostcommon

coverminusthosecalculatedwith aggregatecoverareshownin Figure9. Thoseon theleft of the

page(Figures9a-b)arefor latentheat,andthoseon the right sideof the page(Figures9c-d)are

for sensibleheat.The differencein calculatedfluxes is within _+10%in many locationsand in

both seasons.Howevertherearesignificantdifferencesin the sensibleheatflux in the summer

season(Figure 9c), which are particularly noticeablein parts of the western USA and are

consistent with the large difference in surface albedo and leaf area index for the two

parameterizationsin this region.Thereis alsoan appreciableshift in the Bowen ratio in some
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partsof theeasternUSA in winter months,with the aggregateparameterstendingto give rather

morelatentheatbut ratherlesssensibleheat.

Figure 10 illustrates that the influence on calculated fluxes given by the two alternative

parameterizationscan differ greatly from one location to the next and that the different

parameterizationscangive persistentalterationin thecalculatedsurfaceenergyfluxes in specific

locations.Figure 10ashowsthe monthlyaveragelatentheatand sensibleheat fluxes for a grid

cell in centralKansas,while Figure 10bgivesa grid cell in southernArizona.In Kansas,thereis

little differencethroughouttheentiretwo-yearperiod,but in Arizona including the influence of

evergreen shrub land and semi-desert and, at higher elevations, evergreen trees, reduces the area-

average albedo of aggregate cover and systematically increases the outgoing sensible heat flux

because evaporation is water-limited in this region.

5. Summary and Discussion

Model experiments at the ABRACOS site (this study) and at the FIFE site (see Arain et al., 1996;

Araln, 1994) using observations for validation and initiation, have given guidance on the

aggregation rules appropriate to the BATS model. Linear aggregation rules work well for most of

the vegetation-related parameters, including (on the basis of results for the ABRACOS site)

minimum stomatal resistance. Aerodynamic roughness length is the exception: in this case, a

logarithmic aggregation rule is required (Table 1). In the experiments conducted at the

ABRACOS site and the FIFE site, the dominant responses were sufficiently linear that simple

averaging was appropriate despite marked heterogeneity in surface fluxes from each patch. In
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general terms the theoretical work of Raupach and Finnigan (1995) also supports the linear

averaging of surface cover parameters, albeit in their study for particular combinations of the

surface and aerodynamic resistances used in the Penman-Monteith equation. The sensitivity of

each vegetation parameter used to calculate area-average response of the BATS model was tested

by Arain (1994). These tests showed that most sensitive parameters are fractional cover area,

minimum stomatal resistance, and roughness length, while other BATS vegetation parameters

had little effect on the averaging scheme. Experiments conducted at the ABRACOS site were

effective tests of aggregation rules for stomatal resistance, aerodynamic roughness length, and

zero plane displacement because there were large contrasts in these variables between the forest

and pasture patches. The testing of key vegetation parameters at the ABRACOS helps to draw

conclusion that linear aggregation is sufficient for most of the BATS parameters and a different

set of input parameters corresponding the tested cover classes, would not alter the main

conclusion of this study. Mixture of patches of tall and short crops are not uncommon in parts

of the world where there has been human influence on land cover, and it is reassuring that

aggregation rules for BATS' vegetation-related parameters can work within acceptable limits in

this case.

However, both of the above-mentioned studies suggest that caution is necessary if aggregate

representation is sought in a landscape where there are approximately equal areas with significant

differences in plant-available soil moisture. Such differences may be man-made (by irrigation),

but the proportion of irrigated land within a GCM grid is usually small and its influence on the

area-average fluxes likewise. Large spatial variability in plant-available moisture might have

natural origin, perhaps resulting from intermittent, spatially heterogeneous rainfall. It will be
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appropriate if soil moisture is aggregated in combination with vegetation parameters. A parallel

study (White et al., 1996) directly addressed this issue for the extreme case of convective rain

falling in a semi-arid environment. White's study demonstrated that sufficiently large differences

in soil moisture rarely, if ever, occur because the location of successive convective storms is

random, and the size of individual storms is usually small compared to the amount of moisture

that can be stored in the plants' rooting depth.

The current study reveals a natural situation where large spatial variability in plant-available soil

moisture can compromise the use of an aggregate description of mixed vegetation cover. If

patches of vegetation with markedly different rooting depths exist side by side, then prolonged

rain-free periods can result in moisture shortage for the shorter-rooted vegetation, but not for the

deeper-rooted vegetation. In the case of the Amazon river basin, such rain-free periods are not

usually prolonged and, on the basis of the present study, their detrimental consequences when

using aggregation equations is limited in any case. However, it is possible to envisage particular

situations where this could be a more persistent problem. An example is the case of freely

transpiring, riparian vegetation in a semi-arid environment growing alongside persistently

flowing streams which are sustained by groundwater or distant mountain headwaters. In such

extreme situations it is perhaps necessary to find a way to aggregate soil moisture and vegetation

parameters in combination.

Notwithstanding the above comments, this study assumed that the BATS-specific aggregation

rules given in Table 1 (with linear aggregation of stomatal resistance) are now sufficiently well-

established to be applied in conjunction with remotely sensed land cover data. Accordingly, area-
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averagevaluesof BATS vegetationparameterswerecalculatedfor 2.8° x 2.8° (CCM2) grids and

1° x 1° (ISLSCP) grids across conterminous the United States using these aggregation rules with

the USGS/EDC prototype land cover data set. The values of these aggregate-vegetation

parameters were compared with those for the most common cover for each grid square.

Significant differences were found in some key vegetation parameters such as aerodynamic

roughness, minimum stomatal resistance, maximum and minimum leaf area indices, and albedo.

Stand-alone BATS model simulations were then performed using a 2-year-long time series of

forcing variables from the ISLSCP CDROM data set. In general, the difference in fluxes

calculated for aggregate cover and fluxes calculated for dominant cover was less than what might

have been anticipated on the grounds of the differences in individual parameters. In some cases,

the fact that there are often co-located differences in two or more parameters perhaps helps to

mitigate the net change in surface fluxes. Nonetheless, there were sizable regions of the USA

where significant changes in calculated surface energy fluxes occurred in response to the

different procedures for assigning vegetation parameters in the BATS model.

Further research is required to evaluate whether the difference in surface fluxes given by using

aggregate (as opposed to most-common cover) parameters has a significant influence on modeled

climates given by GCMs. However, global application of aggregation rules to improve GCM

performance (in conjunction with upcoming remotely sensed AVHRR Path-Finder and EOS

MODIS data sets) is at this stage arguably more profoundly limited by shortcomings in the

validation of the cover class-specific values of vegetation parameters used, for example, in

BATS. There is an urgent need to make effective use of the data now available from field sites
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around the world (for evergreen needleleaf forest, savannah grasslands, semi-desert, marsh land,

short grass, and crops) to define the value of parameters for individual cover classes.
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Figure Captions

Figure 1. (a) and (b) show a comparison between sensible heat (Hs: dotted line) and

latent heat (LE: full line) at the pasture site for July 21, 1991. The lines

with symbols are observations, while lines without symbols are model-

simulated fluxes with minimum stomatal resistance of (a) 200 sm -] and (b)

40 sm l, respectively. (c) and (d) show net radiation (Rn: broken line) and

modeled latent heat (LE: full line) at the forest site. (c) was a day with

significant moisture shortage and (d) was a day without moisture shortage.

The lines without symbols are modeled fluxes with 1.5m deep roots

mainly concentrated near the surface, while lines with symbols are with

4m deep roots more equitably distributed.

Figure 2. Comparison of surface fluxes at 10:00 a.m. on October 30, 1990 displayed

as a function of position across the 2000-m wide modeled domain. In each

case, the full line is the flux calculated with representation of distinct

patches of pasture and forest_, with the forest patch lying between 500 and

1500 m, and the broken line is the average value of these same fluxes

across the domain. The dotted line is the flux calculated with aggregate

vegetation covering the entire domain.

Figure 3. Comparison of area-average surface fluxes calculated by the BATS-ABL

model for the ABRACOS site with aggregate representation and explicit

representation for patches of forest and pasture. These calculations were

made at three times of day on five days using BATS vegetation parameters

which had been slightly revised to enhance the agreement between
observed and model-calculated fluxes.

Figure 4. (a) Calculated latent heat (LE: lines without symbol) and sensible heat

(Hs: lines with symbol) given by stand-alone BATS models for the period,

October 14, 1990 to November 1, 1990 when there were dry soils. In each

case, the full line is the area-average flux with separate modeling of equal

areas of forest and pasture, while the broken line is the aggregate

representation of these two covers. (b) is similar to (a) except calculations

are made for the period 12 January, 1991 to 31 January 1991 when there

were moist soils. (c) Soil moisture wilting factors calculated by the stand-

alone BATS model for the complete study period from October 4, 1990 to

September 20, 1991 for upper and root zone soil layers using observed soil

moisture for both pasture and forest site.

Figure 5. Comparison of the calculated fluxes given with three alternative

aggregation rules for minimum stomatal resistance on (a) October 30,

1990 (a day with very dry soils), and (b) August 28, 1991 (a day with wet

soils). Calculated latent heat (LE) fluxes are shown with the lines without

symbols, and sensible heat (Hs) fluxes are shown with lines with crosses.
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Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Percentage difference in BATS-relevant vegetation parameters derived

from the USGS/EDC data set using aggregation rules applied to 2.8 ° x

2.8 ° (CCM2) grid squares over the conterminous USA relative to the

equivalent value for the single most common BATS cover class in each

grid square. The separate figures respectively correspond to the following

parameters: (a) vegetation cover fraction; (b) minimum stomatal

resistance; (c) albedo (average of visible and near infrared range); (d)

warm season (maximum) leaf area index; (e) cool season (minimum) leaf

area index; and (f) aerodynamic roughness length.

Same as Figure 6 but for 1° x 1o (ISLSCP) grid squares.

Calculated values of surface heat fluxes given by applying the ISLSCP

forcing data to a two-dimensional array of stand-alone BATS models

spanning the conterminous USA with parameters for the single most

common cover class [(a), (c), (e), and (g)] and for aggregate-cover [(b),

(d), (f), and (h)]. The top four figures [(a), (b), (e), and (f)] are average

values for the months of June, July and August 1988, while the bottom

four figures [(c), (d), (g), and (h)] are average values for December 1987

and January and February 1988.

Difference between the calculated values of surface heat fluxes shown in

Figure 8 using parameters for most common cover minus those parameters

for aggregate cover. The figures (a) and (b) are for latent heat (LE), while

the figures (c) and (d) are for sensible heat (Hs). The top two figures [(a)

and (c)] are average values for the months of June, July, and August 1988,

while the bottom two figures [(b) and (d)] are average values for

December 1987 and January and February 1988.

Monthly average values of latent heat (LE) and sensible heat (Hs) for 1987

and 1988 calculated with a stand-alone BATS model forced with ISLSCP

CDROM data using aggregate-cover parameters (shown with a symbol)

and most common cover parameters (shown without symbol) for a 1° x 1°

ISLSCP grid square (a) in Kansas and (b) in southern Arizona.
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Table 3. BATS soil parameters used in ABRACOS study

(a) Soil texture parameters for class 10

Parameter Value

Porosity 0.60

Minimum soil suction (mm) 200

Saturated hydraulic conductivity (ram s_) 0.0016

Ratio of saturated thermal conductivity tothat of loam 0.8

Exponent B 9.2

Moisture content relative to saturation at which transpiration ceases 0.487

(b) Albedo for soil color class 7

Condition Albedo

Dry soil, wavelength < 0.7 _tm 0.12

Dry soil, wavelength > 0.7 I.tm 0.24

Wet soil, wavelength < 0.7 _m 0.06

Wet soil, wavelength > 0.7 I.tm 0.12



Table4. BATS statevariables,driving variables,andparameters

States

Surface soil temperature (°K)

Subsurface temperature (°K)

Temperature of foliage (°K)

Temperature of air within foliage (°K)

Water in upper soil layer (mm)

Water in root zone soil (mm)

Total water in soil (ram)

Ground wetness factor (fraction)

Dew on leaves (mm)

Driving Variables (Boundary Inputs)

Incident solar radiation (Wm 2)

Wind velocity (ms -1)

Air temperature at interface level (°K)

Specific humidity at interface level (gKg l)

Precipitation (mm)

Surface pressure (mbar)

Downward longwave radiation (Win -2)

Parameters

Interface height (m)

Vegetation parameters (see Table 2)

Land or sea flag

Soil texture parameters (see Table 3)

Soil color parameters (see Table 3)



Table5. Statisticsfor BATS validationatpasturesite

(a) rSmin = 200 sm j

Flux Mean Bias RMSE Correlation Coefficient

(Wm "2) (Wm -2)

Latent heat -38 82 0.90

Sensible heat + 18 57 0.85

Ground heat -2 35 0.88

Net radiation -31 42 0.99

(b) rSmin = 40 sm 1

Flux Mean Bias RMSE Correlation Coefficient

(Wm -2) (Win"-)

Latent heat - 11 54 0.91

Sensible heat -4 40 0.80

Ground heat - 1 33 0.89

Net radiation -24 36 0.99



Table 6. Daysandtimesfor which aggregateandpatchsimulationswereperformedand
observedsoil moistureatcorrespondingmid-daytime.

Dayof Year Time of day

(hr)

October 26, 1990 09:00 11:00 16:00

October 30, 1990 08:00 10:00 13.00

December 10, 1990 08:00 11:00 16:00

July 3, 1991 08:00 12:00 15:00

August 28, 1991 09:00 12:00 15:00

Moisture in 0.1 m

Soil Layer (mm)
32

30 345

41 402

44 408

40 391

Moisture in lm Soil

Layer (mm)

352



Table 7. Mean latent heat (LE) and sensible-heat (Hs) fluxes over entire domain
(conterminousUSA) during summerand winter seasonsusing single dominant cover
parametersand aggregatecover parameters.The values of maximum and minimum
fluxes in anysingle1° x 1° grid squarearealsoshown.

Summer Season Winter Season

Mean Maximum Minimum Mean Maximum Minimum

LE 58.9 205.4 8.7 28.2 92.8 - 1.4

LE aggregate 56.9 170.4 4.2 29.7 89.2 0.8

Hs 68.3 135.3 -37.5 0.6 53.8 -47.5

Hs aggregate 74.8 134.5 11.2 1.3 50.6 -52.5


